机器学习算法原理与编程实践,中文分词与停用

日期:2019-11-01编辑作者:上市公司

四,模型的训练识别以及比较;

2.1 文本挖掘和文本分类的概念

1,文本挖掘:指从大量的文本数据中抽取事先未知的,可理解的,最终可使用的知识的过程,同时运用这些知识更好的组织信息以便将来参考。
简言之,就是从非结构化的文本中寻找知识的过程
2,文本挖掘的细分领域:搜索和信息检索(IR),文本聚类,文本分类,Web挖掘,信息抽取(IE),自然语言处理(NLP),概念提取。
3,文本分类:为用户给出的每个文档找到所属的正确类别
4,文本分类的应用:文本检索,垃圾邮件过滤,网页分层目录自动生成元数据,题材检测
5,文本分类的方法:一是基于模式系统,二是分类模型


2、基于理解的分词方法

A={0,1},表示具体的类别,即是不可描述网站还是普通网站。因此上述公式可以表示为:

2.3.2 朴素贝叶斯算法实现

样例:使用简单的英文语料作为数据集,代码见文件

# 编写导入的数据
def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him','my'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
                # 使用简单的英语语料作为数据集,有6个文本

    classVec = [0,1,0,1,0,1]     # 文本对应的类别

    return postingList,classVec  # postingList是训练集文本,classVec是每个文本对应的分类

###########################################################################

# 编写贝叶斯算法(sklearn已有贝叶斯算法包,现在是理解贝叶斯算法原理后,自己编写算法代码)


#(1)编写一个贝叶斯算法类,并创建默认的构造方法

class NBayes(object):     # 创建贝叶斯算法类

    def __init__(self):       #初始化类的属性
        self.vocabulary = []  #词典
        self.idf = 0          #词典的IDF权值向量
        self.tf = 0           #训练集的权值矩阵
        self.tdm = 0          #P(x|yi)
        self.Pcates = {}      #P(yi)是一个类别词典P(yi)的值:{类别1:概率,类别2:概率}
        self.labels = []      #对应每个文本的分类,是一个外部导入的列表
        self.doclength = 0    #训练集文本数
        self.vocablen = 0     #词典词长
        self.testset = 0      #测试集 


#(2)导入和训练数据集,生成算法必需的参数和数据结构

def train_set(self,trainset,classVec):  # 传入训练集文本和对应的分类类别

    self.cate_prob(classVec)    # 计算每个分类在数据集中的概率P(yi),cate_prob函数在下面创建
    self.doclength = len(trainset) # 用len函数计算训练集trainset的文本数,赋给类的doclength属性

    tempset = set()  # 使用set(),初始化一个空的集合:是一个无序不重复元素集
    [tempset.add(word) for doc in trainset for word in doc] #生成词典  ,add是往集合添加元素
    # doc遍历trainset,word遍历doc,再将word添加进tempset集合里
    # 训练集文本trainset实际上是一个矩阵,doc遍历取得向量,即单个文本,word遍历取得文本内的词,再添加进集合
    self.vocabulary = list(tempset) # 将tempset转换为列表list,添加进类的vocabulary属性,即词典
    self.vocablen = len(self.vocabulary) #len函数计算词典的长度(这里的词典实际上是一个不重复的词袋空间)

    self.calc_wordfreq(trainset)  # 计算数据集的词频(word frequency):tf和idf ,调用了calc_wordfred函数,传入训练集trainset
    self.build_tdm()  # 按分类累计向量空间的每维值P(x|yi),调用了build_tdm函数


# (3) cate_prob函数:计算数据集中 每个分类的概率P(yi)

def cate_prob(self,classVec):  # 该函数用于计算每个类别在数据集中的概率,被上面的train_set函数调用
    self.labels = classVec     # classVec是导入的训练集文本对应的类别
    labeltemps = set(self.labels)  # 获取全部分类,set()集合:无序不重复元素集,本例就两类:{0,1}
    for labeltemp in labeltemps:    # 遍历所有分类{0,1}
        self.labels.count(labeltemp)  #统计self.labels里类别的个数:类别0的个数和类别1的个数
        self.Pcates[labeltemp] = float(self.labels.count(labeltemp))/float(len(self.labels))
        # 每种类别个数/类别类别总数:6,在Pcates字典里,创建键值对{'0':概率,'1':概率}


# (4) calc_wordfred函数:生成普通的词频向量  TF-IDF

def calc_wordfred(self,trainset):   # 用于计算词袋(词典)内每个词的词频,被上面的train_set函数调用

    self.idf = np.zeros([1,self.vocablen]) # 全0矩阵,矩阵大小:1x词典长度,self.vocablen是上面计算出的词典长度(词袋长)
    self.tf = np.zeros([self.doclength,self.vocablen]) #构造全0矩阵:训练集文件数x词典数,doclength是上面计算出的训练集文本数:6,vocablen是计算出的词典长度 
    #构造训练集的IDF和TF向量模型,IDF是一行,TF是文档数,行,初始化全为0

    for indx in xrange(self.doclength):  # xrange与range用法相同,结果不同,生成的不是列表,而是生成器,适合数字序列较大时,不用一开始就开辟内存空间
    # indx遍历训练集文本数列表,indx取得的是数
        for word in trainset[indx]: #word 遍历trainset中的每一文本的词,##word取得的是词
            self.tf[indx,self.vocabulary.index(word)] +=1    # 权值矩阵的第index行,第k列,加1
            # 词典列表的index方法,返回word的索引位置k
            #  生成了TF词频矩阵

        for signleword in set(trainset[indx]):  # signleword遍历训练集文本里每一文本构成的集合(取得每一文本不重复的词),
            self.idf[0,self.vocabulary.index(signleword)] +=1  # idf权值矩阵的第k个加1
            #index返回每一文本不重复词的索引位置
            #生成IDF矩阵           
## 实际上本函数生成的是训练集的TF矩阵和词袋的IDF矩阵(绝对数形式,非频率)        


# (5) build_tdm函数:按分类累计计算向量空间的每维值P(x|yi),已知类别为yi,求是x的概率

def build_tdm(self):   #计算P(x|yi),被train_set函数调用

    self.tdm = np.zeros([len(self.Pcates),self.vocablen])  #构造全0矩阵,大小:类别词典长度2(在cate_prob函数里)x 词典长度(train_set函数里)
    sumlist = np.zeros([len(self.Pcates),1])  # 构造全0矩阵:大小:类别词典长度x1
    #统计每个分类的总值,sumlist两行一列

    for indx in xrange(self.doclength):    #indx遍历训练集文本数生成的列表[0,1,2,3,4,5],取得的是数字 

        #将同一类别的词向量空间值tf加总
        #即:tf权值矩阵值,六行,分为两类,同类相加,变为两行
        self.tdm[self.labels[indx]] += self.tf[indx]   # labels[indx]是训练集文本对应类别里的第indx个(在cate_prob函数里)即[0,1,0,1,0,1]里的第indx个,对应tdm的第某行
        # tf[indx]是tf权值矩阵的第indx行(在calc_wordfred函数里)

        #统计每个分类的总值--是一个标量
        sumlist[self.labels[indx]] = np.sum(self.tdm[self.labels[indx]]) 
        #利用np.sum计算tdm矩阵的和,赋值给sumlist矩阵的?
        # sumlist得到的结果:0:总值
                            #1:总值

    self.tdm = self.tdm/sumlist   # tdm即:P(x|yi)=P(xyi)/P(yi)
    #得到的结果tdm是一个两行,词典长列的矩阵,表示着P(a1|yi),P(a2|yi)……
  #tdm是一个向量,sumlist是一个值


(3)-(5)函数都被train_set函数调用  
#####################################################################################



# (6) map2vocab函数:将测试集映射到当前字典

def map2vocab(self,testdata):  # 传入测试集数据 testdata
    self.testset = np.zeros([1,self.vocablen])  #构造全0矩阵,大小:1*词典长度
    for word in testdata:    # word遍历测试集(某个文本)
        self.testset[0,self.vocabulary.index(word)] +=1 # testset矩阵的第k个加1
        # vocabulary.index(word)返回字典的与word匹配的词的索引位置
# 本函数是将测试集文档转换为以频数表示的[   ]矩阵   


# (7) predict函数:预测分类结果,输出预测的分类类别

def predict(self,testset):    #传入测试集数据

    if np.shape(testset)[1] != self.vocablen: #如果测试集长度与词典长度不相等,则退出程序
        print "输出错误"
        exit(0)

    predvalue = 0  #初始化类别概率
    predclass = ""  # 初始化类别名称

    for tdm_vect,keyclass in zip(self.tdm,self.Pcates): 
       #P(x|yi) P(yi)    #      变量tdm,计算最大分类值
    #zip函数将tdm和Pcates打包成元组,并返回元组组成的列表。
    #tdm是P(x|yi),Pacates是类别词典P(yi)

        temp = np.sum(testset*tdm_vect*self.Pacate[keyclass])  #测试集testset乘tdm_vect乘Pcates[keyclass]  ,并求和
        #测试集向量*P
        if temp > predvalue:  
            predvalue = temp
            predclass = keyclass
    return predclass   # 输出预测的类别(概率最大的类别)

#########################################################################

#算法的改进:为普通的词频向量使用TF-IDF策略

#calc_tfidf函数:以TF-IDF方式生成向量空间

def calc_tfidf(self,trainset):        # 传入训练集数据
    self.idf = np.zeros([1,self.vocablen])   #构造全0矩阵,大小:1*词典长度
    self.tf = np.zeros([self.doclength,self.vocablen])  #构造全0矩阵,大小:文本数*词典长度

    for indx in xrange(self.doclength):   #indx遍历文本数生成的列表,取得的是数字      
        for word in trainset[indx]:        #word遍历训练集的第indx个文本里的词
            self.tf[indx,self.vocabulary.index(word)]+=1  #tf矩阵的某个值加1
            #消除不同句长导致的偏差
        self.tf[indx] = self.tf[indx]/float(len(trainset[indx]))  #计算的是频率而不是频数

        for signleword in set(trainset[indx]):
            self.idf[0,self.vocabulary.index(signleword)] +=1
    self.idf = np.log(float(self.doclength)/self.idf)

    self.tf = np.multiply(self.tf,self.idf) # 矩阵与向量的点乘TFxIDF

######################################################################

#执行创建的朴素贝叶斯类,获取执行结果

#coding=utf-8

import sys
import os
from numpy import *
import numpy as np
from NBayes_lib import *

dataSet,listClasses = loadDataSet() 

 # 导入外部数据集,loadDataSet是自己创建的函数,返回值为两个,postingList是训练集文本,classVec是每个文本对应的分类
# dataset为句子的词向量
# listclass为句子所属类别 [0,1,0,1,0,1]

nb = NBayes()  #实例化 NBayes是我们创建的贝叶斯算法类
nb.train_set(dataSet,listClasses) # 训练数据集。train_set是创建的类的函数,用于训练
nb.map2vocab(dataSet[0])   # 随机选择一个测试句 #map2vocab函数将测试集映射到当前词典
print nb.predict(nb.testset)  # 输出分类结果,predict函数用于预测分类结果,输出预测的分类类别

# 最后运行程序,看似没有数据间传递,实则是在类属性中已定义好并赋值给属性

分词中的难题

由于每个类别的占比对于概率的计算会有一定影响的,因此这一点也是值的注意的。

2.2.2 中文分词介绍

1,中文分词:将一个汉字序列(句子)切分成一个单独的词(中文自然语言处理的核心问题)
2,中文分词的算法:基于概率图模型的条件随机场(CRF)
3,分词后文本的结构化表示:词向量空间模型,主题模型,依存句法的树表示,RDF的图表示
4,本项目的分词系统:采用jieba分词
5, jieba分词支持的分词模式:默认切分,全切分,搜索引擎切分
6,jieba分词的代码见文件:对未分词语料库进行分词并持久化对象到一个dat文件(创建分词后的语料文件:train_corpus_seg)

#coding=utf-8

import sys
import os
import jieba

reload(sys)
sys.setdefaultencoding('utf-8')    # 配置UTF-8输出环境

#定义两个函数,用于读取和保存文件

def savefile(savpath,content):   # 定义一个用于保存文件的函数
    fp = open(savepath,"wb")
    fp.write(content)
    fp.close()

def readfile(path):    # 定义一个用于读取文件的函数
    fp = open(path,"rb")
    content = fp.read()
    fp.close()
    return content    #函数返回读取的内容


# 以下是整个语料库的分词主程序

corpus_path = "train_corpus_small/"   # 未分词分类语料库路径
seg_path = "train_corpus_seg/"  # 分词后分类语料库路径

catelist = os.listdir(corpus_path) #os.listdir获取cor_path下的所有子目录

for mydir in catelist:       # 遍历所有子目录
    class_path = corpus_path+mydir+"/"  #构造分类子目录的路径
    seg_dir = seg_path+mydir+"/"  #构造分词后的语料分类目录

    if not os.path.exists(seg_dir):  # 是否存在目录,如果没有则创建
        os.makedirs(seg_dir)

    file_list = os.listdir(class_path)  # 获取目录下的所有文件

    for file_path in file_list:      # 遍历目录下的所有文件
        fullname = class_path+file_path    #文件路径
        content = readfile(full.name).strip()   # 读取文件,strip()用于移除字符串头尾指定的字符,即移除头尾的空格
        content = content.replace("rn","").strip()  # 将空格和换行替代为无
        content_seg = jieba.cut(content)    # 利用jieba分词

        savefile(seg_dir+file_path," ".join(content_seg))   # 调用函数保存文件,保存路径为:seg_dir+file_path,用空格将分词后的词连接起来

print "中文语料分词结束"


#############################################################################

# 为了便于后续的向量空间模型的生成,分词后的文本还要转换为文本向量信息并对象化
# 引入Scikit-Learn的Bunch类

from sklearn.datasets.base import Bunch
bunch = Bunch{target_name=[],label=[],filename=[],contents=[]}

# Bunch类提供键值对的对象形式
#target_name:所有分类集名称列表
#label:每个文件的分类标签列表
#filename:文件路径
#contents:分词后的文件词向量形式

wordbag_path = "train_word_bad/train_set.dat"  #分词语料Bunch对象持久化文件路径
seg_path = "train_corpus_seg/"   #分词后分类语料库路径(同上)

catelist = os.listdir(seg_path)  # 获取分词后语料库的所有子目录(子目录名是类别名)
bunch.target_name.extend(catelist)   # 将所有类别信息保存到Bunch对象

for mydir in catelist:     # 遍历所有子目录
    class_path = seg_path+mydir+"/" # 构造子目录路径
    file_list = os.listdir(class_path)    # 获取子目录内的所有文件
    for file_path in file_list:     # 遍历目录内所有文件
        fullname = class_path+file_path    # 构造文件路径
        bunch.label.append(mydir)      # 保存当前文件的分类标签(mydir为子目录即类别名)
        bunch.filenames.append(fullname)  # 保存当前文件的文件路径(full_name为文件路径)
        bunch.contents.append(readfile(fullname).strip())  # 保存文件词向量(调用readfile函数读取文件内容)

file_obj = open(wordbad_path,"wb")  # 打开前面构造的持久化文件的路径,准备写入
pickle.dump(bunch,file_obj)   # pickle模块持久化信息,bunch是要持久化的文件,已添加了信息。file_obj是路径
file_obj.close()
# 之所以要持久化,类似游戏中途存档,分词后,划分一个阶段,将分词好的文件存档,后面再运行就不用重复分词了

print "构建文本对象结束!!"      

# 持久化后生成一个train_set.dat文件,保存着所有训练集文件的所有分类信息
# 保存着每个文件的文件名,文件所属分类和词向量

这种方法又叫做机械分词方法,它是按照一定的策略将待分析的汉字串与一个“充分大的”机器词典中的词条进行配,若在词典中找到某个字符串,则匹配成功(识别出一个词)。按照扫描方向的不同,串匹配分词方法可以分为正向匹配和逆向匹配;按照不同长度优先匹配的情况,可以分为最大(最长)匹配和最小(最短)匹配;按照是否与词性标注过程相结合,又可以分为单纯分词方法和分词与标注相结合的一体化方法。常用的几种机械分词方法如下:

对于 P(Fn|C) 表示的某个类别下某个单词的概率(P(sex|0),表示不可描述网站集合中所有词中,sex 单词出现的概率),P(C) 表示某个类别的文本占比(p(0)表示不可描述网站数量占比),这些都是可以对文本进行统计得到的。而 P(F1F2...Fn) 是一个与类别无关的量,可以不与计算。因此可以看出最终是计算具有 F1F2...Fn 特征的文本属于不可描述网站(P(0|F1F2...Fn))和普通网站(P(1|F1F2...Fn))的概率,哪个概率大就归为那一类。当然关于朴素贝叶斯模型的原理,由于篇幅有限,就不过的阐述了。

2.3 分类算法:朴素贝叶斯

本节主要讨论朴素贝叶斯算法的基本原理和python实现

中文分词技术属于 自然语言处理技术范畴,对于一句话,人可以通过自己的知识来明白哪些是词,哪些不是词,但如何让计算机也能理解?其处理过程就是分词算法。

由前面分析发现 title,deion 以及 keywords 对于搜索引擎都是较为重要的信息,因此分别提取了网页的 title,deion 以及 keywords,并单独测试每一份的语料数据。

2.2.1 文本预处理:

文本处理的核心任务:将非结构化的文本转换为结构化的形式,即向量空间模型

文本处理之前需要对不同类型的文本进行预处理

新词,专业术语称为未登录词。也就是那些在字典中都没有收录过,但又确实能称为词的那些词。最典型的是人名,人可以很容易理解句子“王军虎去广州了”中,“王军虎”是个词,因为是一个人的名字,但要是让计算机去识别就困难了。如果把“王军虎”做为一个词收录到字典中去,全世界有那么多名字,而且每时每刻都有新增的人名,收录这些人名本身就是一项巨大的工程。即使这项工作可以完成,还是会存在问题,例如:在句子“王军虎头虎脑的”中,“王军虎”还能不能算词?

本文由安徽快三开奖结果发布于上市公司,转载请注明出处:机器学习算法原理与编程实践,中文分词与停用

关键词:

开挖Ali零售生态,Alibaba创变成本现象新体验

落后微信近一年时间,支付宝该如何守住现有阵地并进行赶超?“未来三年,支付宝小程序是蚂蚁金服最重要的战略...

详细>>

一波三折之后,你也这么想

原标题:刘强东的孤独:一波三折之后,四个问题求解,谁能够拯救刘强东? 原标题:有钱有势的男人性侵就是被下...

详细>>

子弹是怎样炼成的,企业如何用最小的成本最快

原标题:子弹是怎样炼成的? 为什么要聊子弹短信? 不要急着凭直觉或者随波逐流的感叹:“子弹短信干不过微信,...

详细>>

董事长王思聪卸任,翼龙贷2年30多条借贷纠纷

原标题:翼龙贷2年30多条借贷纠纷 创始人王思聪从“守望者”变成“催债者” 8月26日下午,中国最大的“三农”P2...

详细>>